ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 512]      



Задача 65156

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
[ Гомотетия помогает решить задачу ]
[ Композиция преобразований плоскости ]
Сложность: 4-
Классы: 9,10,11

Точки K и L делят медиану AM треугольника ABC на три равные части, точка K лежит между L и . Отметили точку P так, что треугольники KPL и ABC подобны, причём P и C лежат в одной полуплоскости относительно прямой AM. Докажите, что P лежит на прямой AC.

Прислать комментарий     Решение

Задача 67290

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4-
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 101877

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD с боковой стороной  CD = 30°  диагонали пересекаются в точке E, а углы AED и BCD равны. Окружность радиуса 17, проходящая через точки C, D и E, пересекает основание AD в точке F и касается прямой BF. Найдите высоту трапеции и её основания.

Прислать комментарий     Решение

Задача 101878

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Дана трапеция ABCD с боковой стороной  AB = 10.  Диагонали пересекаются в точке E, а углы AED и ABC равны. Окружность радиуса 13, проходящая через точки A, B и E, пересекает основание AD в точке F и касается прямой CF. Найдите высоту трапеции и её основания.

Прислать комментарий     Решение

Задача 101879

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Дана трапеция ABCD с основаниями AD и BC. Боковая сторона  CD = 16.  Диагонали AC и BD пересекаются в точке E. Окружность радиуса  R = 17,  описанная около треугольника CDE, пересекает основание AD в точке F. Прямая BF касается этой окружности. Известно, что  ∠AED = ∠BCD.  Найдите основания и высоту трапеции ABCD.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .