Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 512]
Высоты LA и LB ромба KLMN пересекают его диагональ KM в точках P и Q (точка P лежит между K и Q), PQ = p, AB = q. Найдите KP.
Перпендикуляр к боковой стороне AB трапеции ABCD, проходящий через её середину K, пересекает сторону CD в точке L. Известно, что площадь четырёхугольника AKLD в пять раз больше площади четырёхугольника BKLC, CL = 3, DL = 15, KC = 4. Найдите длину отрезка KD.
В трапеции KLMN основания KN и LM равны 12 и 3 соответственно. Из точки Q, лежащей на стороне MN, опущен перпендикуляр QP на сторону KL. Известно, что P – середина стороны KL, PM = 4 и что площадь четырёхугольника PLMQ в четыре раза меньше площади четырёхугольника PKNQ.
Найдите длину отрезка PN.
В треугольнике ABC AB = a, AC = b, точка O – центр описанной окружности. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.
В треугольнике KLM KM = k, ML = m, точка O – центр описанной окружности. Прямая KN, перпендикулярная прямой MO, пересекает продолжение стороны LM в точке N. Найдите LN.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 512]