ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 109]      



Задача 54544

Темы:   [ Построение треугольников по различным элементам ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу и радиусам вписанной и описанной окружностей.

Прислать комментарий     Решение


Задача 110863

Темы:   [ Вспомогательная окружность ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

Точки B1 и C1 расположены на сторонах соответственно AC и AB треугольника ABC . Отрезки BB1 и CC1 пересекаются в точке P ; O – центр вписанной окружности треугольника AB1C1 , M – точка касания этой окружности с отрезком B1C1 . Известно, что прямые OP и BB1 перпендикулярны. Докажите, что AOC1 = MPB1 .
Прислать комментарий     Решение


Задача 115606

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Углы между биссектрисами ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектрисы AD и CE треугольника ABC пересекаются в точке F . Известно, что точки B , D , E и F лежат на одной окружности. Докажите, что радиус этой окружности не меньше радиуса вписанной в этот треугольник окружности.
Прислать комментарий     Решение


Задача 115643

Темы:   [ Вспомогательная окружность ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

В треугольнике ABC угол A равен 60o . Пусть BB1 и CC1 — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой B1C1 , лежит на стороне BC .
Прислать комментарий     Решение


Задача 55512

Темы:   [ Отрезок, видимый из двух точек под одним углом ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD известно, что AB = BC = CD, M — точка пересечения диагоналей, K — точка точка пересечения биссектрис углов A и D. Докажите, что точки A, M, K и D лежат на одной окружности.

Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .