|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l . Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$. |
Задача 54983
УсловиеТочки P и Q расположены на стороне BC треугольника ABC, причём BP : PC = 1 : 2 и BQ : QC = 4 : 1. Точка R расположена на продолжении стороны AC, а точка L является серединой той же стороны. При этом C принадлежит отрезку AR и AC : CR = 2 : 1. Найдите отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T являются точками пересечения прямой BR с прямыми LQ и AP соответственно. ПодсказкаСм. задачу 54980. Ответ9/40. Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|