Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC гипотенуза AB=c , A = α . Найдите радиус окружности, касающейся катета AC , гипотенузы AB и окружности, описанной около треугольника ABC .

Вниз   Решение


Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями.

ВверхВниз   Решение


Основания трапеции равны 2 и 12, а диагонали – 6 и 10. Найдите угол между диагоналями.

ВверхВниз   Решение


Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

ВверхВниз   Решение


Плоскость, параллельная основанию пирамиды, делит её объём на две равные части. В каком отношении эта плоскость делит боковые рёбра пирамиды?

ВверхВниз   Решение


Автор: Фольклор

Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году.
А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?

ВверхВниз   Решение


Объём тетраэдра ABCD равен V . На ребре AB взяты точки M и N , а на ребре CD – точки P и Q . Известно, что MN = α AB , PQ = β CD . Найдите объём тетраэдра MNPQ .

ВверхВниз   Решение


Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

ВверхВниз   Решение


На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра.

ВверхВниз   Решение


Объём пирамиды ABCD равен 1. На рёбрах AD , BD , CD взяты соответственно точки K , L и M , причём 2AK = KD , BL = 2LD и 2CM = 3MD . Найдите объём многогранника ABCKLM .

Вверх   Решение

Задача 64955
Тема:    [ Свойства коэффициентов многочлена ]
Сложность: 3
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.


Решение 1

Найдём коэффициент при х в полученном многочлене. Подобные слагаемые с буквенной частью x образуются при перемножении 2014 одинаковых скобок следующим образом: в одной из скобок берется слагаемое  – x,  а в остальных скобках – слагаемое 1. Следовательно, коэффициент при х будет равен –2014.


Решение 2

Сумма коэффициентов полученного многочлена равна его значению при  x = 1,  то есть  (1 – 1 + 1)2014 = 1.  Но в этом многочлене коэффициент при x4028 и свободный член равны 1. Следовательно, должен быть хотя бы один отрицательный коэффициент.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2014
класс
Класс 10
задача
Номер 10.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .