ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 1 до 26. Даны пять точек некоторой окружности. С помощью
одной линейки постройте шестую точку этой окружности.
Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное количество составных чисел. |
Задача 111829
УсловиеВ бесконечной последовательности (xn) первый член x1 – рациональное число, большее 1, и xn+1 = xn + 1/[xn] при всех натуральных n. Решение Назовём особым членом последовательности такой член xn, для которого [xn] > [xn–1]. Особых членов бесконечно много, так как если [xn] = k, то Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке