|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой. |
Задача 56924
УсловиеНа сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем прямые AA1, BB1 и CC1 пересекаются в одной точке P. Докажите, что прямые AA2, BB2 и CC2, симметричные этим прямым относительно соответствующих биссектрис, тоже пересекаются в одной точке Q.РешениеМожно считать, что точки A2, B2 и C2 лежат на сторонах треугольника ABC. Согласно задаче 5.78Следовательно, Замечание. Утверждение остается верным и в том случае, когда точки A1, B1 и C1 взяты на продолжениях сторон, если только точка P не лежит на описанной окружности S треугольника ABC; если же P лежит на окружности S, то прямые AA2, BB2 и CC2 параллельны (см. задачу 2.90). Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|