ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если треугольник не тупоугольный,
то
ma + mb + mc A – вершина правильного звёздчатого пятиугольника. Ломаная AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE продолжены до пересечения в точке F. Докажите, что многоугольник ABB'CC'DED' равновелик четырёхугольнику AD'EF. На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус. |
Задача 61101
УсловиеДокажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа. ПодсказкаНайдите рекуррентное соотношение, которому удовлетворяют многочлены 2Tn(x/2). Решение Пусть fn(x) = 2Tn(x/2). Докажем наше утверждение по индукции, добавив, что deg fn = n. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке