ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб. Натуральное число n таково, что 3n + 1 и 10n + 1 являются квадратами натуральных чисел. Докажите, что число 29n + 11 – составное. Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E, AB = AD, CA – биссектриса угла C, ∠BAD = 140°, ∠BEA = 110°.
В розетку электросети подключены приборы, общее сопротивление которых составляет R=50 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx и Ry их общее сопротивление даётся формулой R=
Из условия
tgϕ=1/ cosα cosβ+ tgα tgβ вывести,
что cos 2ϕ
Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.
|
Задача 102522
Условие
Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.
Подсказка
Докажите, что точки M, N, P и Q лежат на одной окружности. Отсюда следует, что треугольники MNO и QPO подобны.
Решение
Заметим, что точка N лежит между B и M, а точка P — между B и Q. По теореме о касательной и секущей BN . BM = AB2 = BP . BQ. Следовательно, точки M, N, P и Q лежат на одной окружности.
(Действительно, из равенства
BN . BM = BP . BQ следует равенство
Хорды MP и NQ пересекаются в точке O. Значит, треугольник MNO подобен треугольнику
QPO по двум углам (
Из равенств BN . BM = AB2 и BP . BQ = AB2 находим, что
BN =
Тогда
MN = BM - BN = 9 - 4 = 5 и PQ = BQ - BP =
Следовательно,
Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке