Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб.

Вниз   Решение


Натуральное число n таково, что  3n + 1  и  10n + 1  являются квадратами натуральных чисел. Докажите, что число  29n + 11  – составное.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E,  AB = AD,  CA – биссектриса угла C,  ∠BAD = 140°,  ∠BEA = 110°.
Найдите угол CDB.

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет  R=50 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx и Ry их общее сопротивление даётся формулой R= , а для нормального функционирования электросети, общее сопротивление в ней должно быть не меньше 30 Ом.

ВверхВниз   Решение


Из условия tgϕ=1/ cosα cosβ+ tgα tgβ вывести, что cos 2ϕ 0 .

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.

ВверхВниз   Решение


Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

ВверхВниз   Решение


Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.

Вверх   Решение

Задача 102710
Темы:    [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.


Решение

Пусть точка M'(x';y') симметрична точке M(x;y) относительно оси OX. Тогда точки M и M' лежат по разные стороны от оси OX на прямой, перпендикулярной этой оси, на равных расстояниях от точки P пересечения этой прямой с осью OX. Значит, у точек M и M' одинаковые абсциссы и противоположные ординаты. Следовательно, x' = x, y' = - y.

Для точки M'(x';y'), симметричной данной точке M(x;y) относительно оси OY, аналогично получим, что x' = - x, y' = y.


Ответ

а) (x; - y); б) (- x;y).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4216

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .