Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Какими должны быть значения a и b,  чтобы многочлен   x4 + x³ + 2x² + ax + b был полным квадратом?

Вниз   Решение


Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?

ВверхВниз   Решение


В некоторый угол B вписаны две непересекающиеся окружности. Окружность большего радиуса касается сторон этого угла в точках A и C, меньшего — в точках A1 и C1(точки A, A1 и C, C1 лежат на разных сторонах угла B). Прямая AC1 пересекает окружности большего и меньшего радиусов в точках E и F соответственно. Найдите отношение площадей треугольников ABC1 и A1BC1, если A1B = 2, EF = 1, а длина AE равна среднему арифметическому длин BC1 и EF.

ВверхВниз   Решение


Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

ВверхВниз   Решение


В неравнобедренном остроугольном треугольнике ABC проведены высоты AA1 и CC1, H – точка пересечения высот, O – центр описанной окружности, B0 – середина стороны AC. Прямая BO пересекает сторону AC в точке P, а прямые BH и A1C1 пересекаются в точке Q. Докажите, что прямые HB0 и PQ параллельны.

ВверхВниз   Решение


Найдите расстояние между точкой  A(1, 7)  и точкой пересечения прямых  x – y – 1 = 0  и  x + 3y – 12 = 0.

ВверхВниз   Решение


В трапеции KLMN известно, что LM$ \Vert$KN, $ \angle$KLM = $ {\frac{\pi}{2}}$, LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.

ВверхВниз   Решение


Сфера проходит через точки A , B , C , D и пересекает отрезки SA , SB , SC , SD в точках A1 , B1 , C1 , D1 соответственно. Известно, что SD1 = , DD1 = , отношение площадей треугольников SA1B1 и SAB равно , отношение объёмов пирамид SB1C1D1 и SBCD равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите отрезки SA1 , SB1 , SC1 .

ВверхВниз   Решение


Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

ВверхВниз   Решение


Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?

ВверхВниз   Решение


Даны точки A(- 2;2), B(- 2; - 2) и C(6;6). Составьте уравнения прямых, на которых лежат стороны треугольника ABC.

Вверх   Решение

Задача 102719
Тема:    [ Метод координат на плоскости ]
Сложность: 3-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Даны точки A(- 2;2), B(- 2; - 2) и C(6;6). Составьте уравнения прямых, на которых лежат стороны треугольника ABC.


Решение

Поскольку абсциссы точек A(- 2;2) и B(- 2; - 2) равны, то уравнение прямой AB имеет вид x = - 2, или x + 2 = 0.

Если x1$ \ne$x2 и y1$ \ne$y2, то уравнение прямой, проходящей через точки M1(x1;y1 и M2(x2;y2 можно записать в виде

$\displaystyle {\frac{y-y_{1}}{y_{2}-y_{1}}}$ = $\displaystyle {\frac{x-x_{1}}{x_{2}-x_{1}}}$.

Поэтому уравнение прямой AC имеет вид

$\displaystyle {\frac{y-2}{6-2}}$ = $\displaystyle {\frac{x-(-2)}{6-(-2)}}$. или x - 2y + 6 = 0.

Аналгично находим уравнение прямой BC.


Ответ

AB :  x + 2 = 0, AC :  x - 2y + 6 = 0, BC :  x - y = 0.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4225

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .