Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

Вниз   Решение


Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.

ВверхВниз   Решение


Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

ВверхВниз   Решение


Доказать, что число  n5 – 5n³ + 4n  делится на 120 при любом натуральном n.

ВверхВниз   Решение


На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?

ВверхВниз   Решение


Рассмотрим 5 точек A, B, C, D, E так что ABCD - параллелограмм, BCED лежат на одной окружности. Al, прямая lпересекает внутренность [DC] в F и прямую BC в G. Пусть EF = EG = EC. Доказать, что l - биссектриса угла DAB.

ВверхВниз   Решение


Доказать, что  7 + 7² + ... + 74K,  где K – любое натуральное число, делится на 400.

ВверхВниз   Решение


Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.

ВверхВниз   Решение


У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать?

Вверх   Решение

Задача 104004
Тема:    [ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8
Из корзины
Прислать комментарий

Условие

У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать?

Решение

Из квадрата 7×7 можно получить с помощью разрезаний только квадраты со сторонами 2, 3 и 6, так как число 49 раскладывается в сумму трех квадратов только одним способом: 49 = 36 + 9 + 4. Пример разрезания на шесть частей смотри на рисунке:

Здесь из зеленых частей можно сложить квадрат 6×6. Существует способ решить задачу, разрезав квадрат на пять частей:

Источники и прецеденты использования

Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Место проведения 57 школа
Год 2005/06
занятие
Номер 5
Название Разрезания
Тема Разрезания, разбиения, покрытия и замощения
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .