Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB).

Вниз   Решение


Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?

ВверхВниз   Решение


Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

ВверхВниз   Решение


{a1, a2, ..., a20} — набор целых положительных чисел.
Строим новый набор чисел {b0, b1, b2, ...} по следующему правилу:
b0 — количество чисел исходного набора, которые больше 0,
b1 — количество чисел исходного набора, которые больше 1,
b2 — количество чисел исходного набора, которые больше 2,
и т.д., пока не пойдут нули. Докажите, что сумма всех чисел исходного набора равна сумме всех чисел нового набора.

ВверхВниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1

ВверхВниз   Решение


Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок).

А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее натуральное значение n, при котором число n! делится на 990.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC взяты точки D и E соответственно, причём  AD/DB = BE/EC = 2  и  ∠C = 2∠DEB.
Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Даны такие точки A, B, C и D, что отрезки AC и BD пересекаются в точке E. Отрезок AE на 1 см короче, чем отрезок AB,  AE = DC,  AD = BE,
ADC = ∠DEC.  Найдите длину EC.

ВверхВниз   Решение


В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.

ВверхВниз   Решение


На протяжении некоторого года (от 1 января до 31 декабря включительно) количество вторников было равно количеству четвергов. Следует ли из этого, что и количество сред было такое же? Рассмотрите два случая:
а) в году было 365 дней,
б} в году было 366 дней.

Вверх   Решение

Задача 107722
Тема:    [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

На протяжении некоторого года (от 1 января до 31 декабря включительно) количество вторников было равно количеству четвергов. Следует ли из этого, что и количество сред было такое же? Рассмотрите два случая:
а) в году было 365 дней,
б} в году было 366 дней.

Решение

а) В году 365 дней, то есть 52 полные недели плюс один день. Если год начинается со среды (например, 2003-й год), то сред будет на одну больше, чем вторников и четвергов. б) 366 дней — это 52 недели и ещё 2 дня. Они не могут быть вторником и четвергом, так как эти дни идут не подряд. Не один из этих дней не среда, потому что иначе другой день был бы вторником или четвергом, и при этом нарушается условие равенства вторников и четвергов. Значит, сред в году не больше и не меньше.

Ответ

а) Не следует. б) Следует.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
номер/год
Год 2002
Название конкурс по математике
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .