Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?

Вниз   Решение


На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции

y= sin x, x(0).

Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α() ; б) α(0;) ?

ВверхВниз   Решение


Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

ВверхВниз   Решение


На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

ВверхВниз   Решение


Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
  а) жалованье между отрядами Черномор распределяет как ему угодно;
  б) жалованье между отрядами Черномор распределяет поровну?

ВверхВниз   Решение


На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно.
Докажите, что если  AK = BK,  то  AN = 2KM.

Вверх   Решение

Задача 108231
Темы:    [ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно.
Докажите, что если  AK = BK,  то  AN = 2KM.


Решение

Пусть E – проекция точки K на сторону AB. Тогда EM – средняя линия треугольника ABC. Значит,  EM || AC  и  EM = ½ AC.  Кроме того,  EK || CH,  поэтому треугольники EKM и CNA подобны по двум углам. Значит,  AM : KM = AC : TM = 2 : 1.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6578
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1993
Этап
Вариант 4
класс
Класс 10
задача
Номер 93.4.10.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .