ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб. Натуральное число n таково, что 3n + 1 и 10n + 1 являются квадратами натуральных чисел. Докажите, что число 29n + 11 – составное. Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E, AB = AD, CA – биссектриса угла C, ∠BAD = 140°, ∠BEA = 110°.
В розетку электросети подключены приборы, общее сопротивление которых составляет R=50 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx и Ry их общее сопротивление даётся формулой R=
Из условия
tgϕ=1/ cosα cosβ+ tgα tgβ вывести,
что cos 2ϕ
Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.
Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.
Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.
Окружность C2 расположена внутри окружности C1 и касается
ее в точке P. Секущая MN окружности
C1(M, N
Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра. |
Задача 109176
Условие
Середины противоположных рёбер тетраэдра соединены. Доказать, что
сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
РешениеПусть AM=MS, SN=NC, SP=PB, AK=KB, BL=LC, AR=RC (рис.). Покажем, что все три отрезка ML,KN,PR пересекутся в одной точке. Например, покажем, что KN с ML пересекаются и делят в точке пересечения друг друга пополам. Это вытекает из того, что MNLK – параллелограмм. В этом легко убедиться, заметив, что KL – средняя линия в треугольнике ABC , MN – средняя линия в треугольнике ASC , обе они параллельны AC и равны ее половине. Аналогично можно показать, что, например, PR и ML пересекаются и делятся в точке пересечения пополам, из чего следует, что все три отрезка пересекаются в одной точке. Из треугольника KLN получаем, что KN<KL+LN=(SB+AC)/2 . Из треугольника PML: ML<MP+PL=(AB+SC)/2 . Из треугольника PKR: PR<KP+KR=(AS+BC)/2 . Сложив почленно полученные неравенства, получим требуемое.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке