Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Отрезок KB является биссектрисой треугольника KLM . Окружность радиуса 5 проходит через вершину K , касается стороны LM в точке B и пересекает сторону KL в точке A . Найдите угол MKL и площадь треугольника KLM , если ML=9 , KA:LB=5:6 .

Вниз   Решение


Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

ВверхВниз   Решение


Автор: Иванов С.

Дан треугольник ABC. Точки A1, B1 и C1 – середины сторон BC, AC и AB соответственно. На продолжении отрезка C1B1 отложен отрезок B1K по длине равный . Известно, AA1 = BC. Докажите, что AB = BK.

ВверхВниз   Решение


От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
  а) Могут ли спилы быть подобными, но не равными треугольниками?
  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

ВверхВниз   Решение


В справочнике "Магия для чайников" написано:
  Замените в слове ЗЕМЛЕТРЯСЕНИЕ одинаковые буквы на одинаковые цифры, а разные – на разные.
  Если полученное число окажется простым, случится настоящее землетрясение.

Возможно ли таким образом устроить землетрясение?

ВверхВниз   Решение


На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC.

Вверх   Решение

Задача 109195
Темы:    [ Ортоцентр и ортотреугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC.


Решение

  Проведём биссектрисы внешних углов треугольника A1B1C1. Пусть биссектрисы внешних углов B1 и C1 пересекаются в точке A2, и т.д. Через точку A2 проходит также биссектриса угла A1 (поскольку точка A2 равноудалена от прямых A1B1, B1C1 и A1C1) – прямая A1A. Значит, в треугольнике A2B2C2 прямые AA1, BB1 и СС1 являются высотами. Докажем, что треугольники A2B2C2 и ABC совпадают.
  Пусть это не так, например, точка A2 находится вне треугольника ABC. Тогда луч A2B2 пересекает сторону AB треугольника ABB1 (в точке C1) и не пересекает сторону AB1 (их разделяет прямая A2A1). Следовательно, он пересекает сторону BB1, то есть точка B2 находится внутри отрезка BB1, а значит, внутри треугольника ABC. Аналогично C2 находится внутри треугольника ABC. Но отрезок B2C2 пересекает сторону BC в точке A1. Противоречие.
  Аналогично к противоречию ведёт предположение о том, что A2 находится внутри треугольника ABC.

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 28
Дата 2006/2007
вариант
Вариант осенний тур, основной вариант, 10-11 класс
задача
Номер 2
web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2288

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .