ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1, ..., n так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку хорошей, если число в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которой во всех строках одинаковое количество хороших клеток? На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел? На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков – белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик? Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b). Дан квадратный трёхчлен f(x) = x² + ax + b. Известно, что для любого вещественного x существует такое вещественное y, что f(y) = f(x) + y. Найдите наибольшее возможное значение a. Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и
коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл. На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре? Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC = ∠ODC. Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны). Имеется 4 монеты, из которых 3 – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за три взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных? На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга. В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре? |
Задача 109690
Условие
В микросхеме 2000 контактов, первоначально любые два контакта соединены
отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода,
причем Вася (он начинает) за ход режет один провод, а Петя – либо два,
либо три провода.
Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает.
Кто из них выигрывает при правильной игре?
Решение 1Решение 2Выигрывает Петя. Разобьем контакты на четыре одинаковых группы A , B , C и D . В каждой группе пронумеруем контакты числами от 1 до 500. Мысленно покрасим в черный цвет провода между контактами с разными номерами, и в белый цвет– между контактами с одинаковыми номерами. Петя будет отвечать на любой ход Васи так, чтобы для каждого номера k от контактов Ak , Bk , Ck и Dk отходило поровну черных проводов, и если у одного из контактов больше нет белых проводов, то их не было бы и у других контактов с таким же номером. До начала игры это условие, очевидно, выполняется. Именно благодаря этому условию проигрышная ситуация впервые случится после Васиного хода. Опишем подробно Петину стратегию. Сначала рассмотрим случай, когда Вася режет черный провод. Если Вася перерезает провод между контактами одной группы, например, провод AiAj , то Петя перережет провода BiBj , CiCj и DiDj . Если Вася перерезает провод между проводами из разных групп и с разными номерами, например, провод AiBj , то Петя в ответ перережет провода AjBi , CiDj и CjDi . Такие ходы Петя может сделать, так как из возможности отрезать один провод от некоторого контакта следует возможность отрезать по одному проводу от вершин с таким же номером. Остается рассмотреть случай, когда Вася перерезал белый провод, т.е., провод между контактами из разных групп, но с одинаковыми номерами. Рассмотрим четыре контакта Ak , Bk , Ck и Dk . Первоначально любые два из них соединены белым проводом. После того, как Вася перерезал первый из этих проводов, например, провод AkBk , Петя перережет два провода так, чтобы между этих контактов осталось три провода, имеющие один общий конец (например, Петя может перерезать провода BkCk и CkAk , после чего останутся провода AkDk , BkDk и CkDk , что подтверждает возможность такого хода). Если же Вася когда-нибудь перережет один из этих трех проводов, то от одного из контактов Ak , Bk или Ck он отрежет последний провод к контактам с этим же номером k , следовательно, от этого контакта будет отходить еще какой-то черный провод. Значит, и от трех других контактов с номером k будут отходить черные провода, следовательно, Петя может перерезать два оставшихся белых провода между контактами с номером k , что он и сделает. Отметим, что каждый раз после хода Пети описанное выше условие выполняется. Следовательно, Петя всегда сможет сделать ход, и, так как количество проводов конечно, проиграет Вася. См. также данную задачу. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке