Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых согласованно вращающихся шестерёнок так, чтобы углы между сцепленными шестерёнками были не меньше 150°? При этом:
  для простоты шестёренки считаются кругами;
  шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
  угол между сцепленными шестерёнками – это угол между радиусами их окружностей, проведёнными в точку касания;
  первая шестерёнка должна быть сцеплена со второй, вторая – с третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.

Вниз   Решение


В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.
Могут ли на сторонах оказаться 33 последовательных целых числа (в каком-нибудь порядке)?

ВверхВниз   Решение


Найдите наибольшее значение функции y = 16x-4 sin x+8 на отрезке [-;0] .

ВверхВниз   Решение


Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?

ВверхВниз   Решение


Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику с вершинами в центрах окружностей.

ВверхВниз   Решение


Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .

ВверхВниз   Решение


Числа x, y, z удовлетворяют равенству  x + y + z – 2(xy + yz + xz) + 4xyz = ½.  Докажите, что хотя бы одно из них равно ½.

ВверхВниз   Решение


Точка M расположена на стороне AB параллелограмма ABCD, причём  BM : MA = 1 : 2.  Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.

ВверхВниз   Решение


Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.

Вверх   Решение

Задача 110100
Темы:    [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.


Решение

  Пусть трёхчлен f(x) принимает простые значения в точках  n – 1,  n и  n + 1.  Те же значения он принимает в точках, симметричных указанным относительно оси параболы  y = f(x).  Эти симметричные точки также целые, так как по условию абсцисса вершины параболы целая или полуцелая. Отсюда следует утверждение задачи, если точка  K(n, f(n))  не является вершиной параболы.
  Если  K(n, f(n))  – вершина параболы, то  f(x) = (x – n)² + p,  причём числа  f(n) = p  и  f(n + 1) = p + 1  – простые. Значит,  p = 2,  p + 1 = 3.  Но тогда и
f(n + 3) = 3² + 2 = 11  – простое число.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2002
Этап
Вариант 4
Класс
Класс 9
задача
Номер 02.4.9.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .