Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?

Вниз   Решение


Пете и Васе подарили одинаковые наборы из N гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение N.

ВверхВниз   Решение


За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.

ВверхВниз   Решение


В компании из  2n + 1 человека для любых n человек найдётся отличный от них человек, знакомый с каждым из них.
Докажите, что в этой компании есть человек, знающий всех.

ВверхВниз   Решение


Медианы AA' и BB' треугольника ABC пересекаются в точке M , причем AMB=120o . Докажите, что углы AB'M и BA'M не могут быть оба острыми или оба тупыми.

ВверхВниз   Решение


У Алёны есть мобильный телефон, заряда аккумулятора которого хватает на 6 часов разговора или 210 часов ожидания. Когда Алёна садилась в поезд, телефон был полностью заряжен, а когда она выходила из поезда, телефон разрядился. Сколько времени она ехала на поезде, если известно, что Алёна говорила по телефону ровно половину времени поездки?

ВверхВниз   Решение


Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

ВверхВниз   Решение


Существует ли такая бесконечная возрастающая арифметическая прогрессия {an} из натуральных чисел, что произведение an...an+9 делится на сумму
an +... + an+9  при любом натуральном n?

Вверх   Решение

Задача 110189
Темы:    [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Существует ли такая бесконечная возрастающая арифметическая прогрессия {an} из натуральных чисел, что произведение an...an+9 делится на сумму
an +... + an+9  при любом натуральном n?


Решение

  Предположим, что такая прогрессия существует. Тогда число  An = (2an)...(2an+9)  делится на  Bn = an+4 = an+5  при любом натуральном n. С другой стороны, обозначив через d разность прогрессии, имеем  An = (Bn – 9d)(Bn – 7d)...(Bn – d)(Bn + d)...(Bn + 7d)(Bn + 9d).
  Значит,  An = BnCn + D,  где Cn – целое число,  D = – d10(1·3·...·7·9)².  Из этого равенства ясно, что An не делится на Bn при Bn > D.  Противоречие.


Ответ

Не существует.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2005
Этап
Вариант 4
1
Класс
Класс 9
задача
Номер 05.4.9.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .