Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

Вниз   Решение


Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.

ВверхВниз   Решение


Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

ВверхВниз   Решение


Доказать, что число  n5 – 5n³ + 4n  делится на 120 при любом натуральном n.

ВверхВниз   Решение


На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?

ВверхВниз   Решение


Рассмотрим 5 точек A, B, C, D, E так что ABCD - параллелограмм, BCED лежат на одной окружности. Al, прямая lпересекает внутренность [DC] в F и прямую BC в G. Пусть EF = EG = EC. Доказать, что l - биссектриса угла DAB.

ВверхВниз   Решение


Доказать, что  7 + 7² + ... + 74K,  где K – любое натуральное число, делится на 400.

ВверхВниз   Решение


Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.

Вверх   Решение

Задача 110751
Темы:    [ Выпуклые многоугольники ]
[ Выпуклый анализ и линейное программирование ]
[ Неравенства с площадями ]
[ Индукция в геометрии ]
[ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 5+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.

Решение

Воспользуемся соображением:

1) если двигать одну из вершин (трех)(много)угольника с постоянной скоростью, то его площадь меняется тоже с постоянной скоростью.
2) линейная комбинация линейных функций тоже линейна.
3) линейная функция достигает максимума (минимума) на границе отрезка.

Пусть P - вершина M, и число сторон M не меньше 4, R, T - соседние с P вершины. Будем двигать P параллельно [RT]. Тогда при движении в любом из двух направлений вершина M выйдет на продолжение стороны P.

Применив эти соображения, сведем задачу к случаю, когда P лежит на продолжении одной из сторон M, т.е. один из углов M равен π.

Но в этом случае дело сводится к многоугольнику с меньшим числом вершин и завершается индукционным спуском.

Источники и прецеденты использования

олимпиада
Название Международная Математическая Олимпиада
Год
Год 2006
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .