Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Можно ли вычеркнуть из произведения  1!·2!·3!·...·100!  один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?

Вниз   Решение


Может ли вершина параболы  у = 4х² – 4(а + 1)х + а  лежать во второй координатной четверти при каком-нибудь значении а?

ВверхВниз   Решение


Автор: Шень А.Х.

Дан прямоугольный треугольник (см. рисунок). Приложите к нему какой-нибудь треугольник (эти треугольники должны иметь общую сторону, но не должны перекрываться даже частично) так, чтобы получился треугольник с двумя равными сторонами.

ВверхВниз   Решение


  В стране, дома жителей которой представляют собой точки плоскости, действуют два закона:
    1. Человек может играть в баскетбол, лишь если он выше ростом большинства своих соседей.
    2. Человек имеет право на бесплатный проезд в транспорте, лишь если он ниже ростом большинства своих соседей.
  В каждом законе соседями человека считаются все люди, живущие в круге некоторого радиуса с центром в доме этого человека. При этом каждый человек сам выбирает себе радиус для первого закона и радиус (не обязательно такой же) для второго закона. Может ли в этой стране не менее 90% людей играть в баскетбол и не менее 90% людей иметь право на бесплатный проезд в транспорте?

ВверхВниз   Решение


Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.

ВверхВниз   Решение


Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

Вверх   Решение

Задача 115357
Темы:    [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)


Решение

Предположим, что это произошло. Так как скорости постоянны, каждые два лыжника встречались не более одного раза. Лыжник, стартовавший первым, не мог никого обогнать; значит, его обогнали четверо, и он пришел пятым. С другой стороны, лыжника, стартовавшего последним, никто не мог обогнать, поэтому он сам обогнал четверых и также пришел пятым. Противоречие.


Ответ

Не могло.

Замечания

См. также задачу 115366.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2009-2010
Этап
Вариант 4
Класс
Класс 10
задача
Номер 06.4.10.1
олимпиада
Название Московская математическая регата
год
Год 2015/16
класс
Класс 10
задача
Номер 10.2.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .