Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Метро города Урюпинска состоит из трёх линий и имеет по крайней мере две конечные станции и по крайней мере два пересадочных узла, причём ни одна из конечных станций не является пересадочной. С каждой линии на любую из остальных можно перейти по крайней мере в двух местах. Нарисуйте пример такой схемы метро, если известно, что это можно сделать, не отрывая карандаша от бумаги и не проводя два раза один и тот же отрезок.

Вниз   Решение


Электрик был вызван для ремонта гирлянды из четырёх соединённых последовательно лампочек, одна из которых перегорела. На вывинчивание любой лампочки из гирлянды уходит 10 секунд, на завинчивание -- 10 секунд. Время, которое тратится на другие действия, мало. За какое наименьшее время электрик заведомо может найти перегоревшую лампочку, если у него есть одна запасная лампочка?

ВверхВниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.

ВверхВниз   Решение


Автор: Фольклор

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

ВверхВниз   Решение


Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль – 5, а Тофсла – 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются и один снежок не может попасть в двоих.)

ВверхВниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, у которого одна из вершин была в данной точке, а две другие — на двух данных окружностях.

Вверх   Решение

Задача 116112
Темы:    [ Поворот помогает решить задачу ]
[ Треугольник (построения) ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

С помощью циркуля и линейки постройте равносторонний треугольник, у которого одна из вершин была в данной точке, а две другие — на двух данных окружностях.

Решение

Предположим, что вершины B и C равностороннего треугольника ABC лежат на данных окружностях S1 и S2 соответственно, а вершина A совпадает с данной точкой, лежащей вне окружностей. При повороте на угол 60o вокруг точки A , переводящем вершину B в вершину C , центр O1 окружности S1 перейдёт в точку O1' , окружность S1 — в окружность S1' с центром O1' , проходящую через точку C .
Отсюда вытекает следующий способ построения. Строим образ O1' центра O1 данной окружности S1 при повороте вокруг данной точки A на угол 60o или -60o . Если при этом повороте образ окружности S1 пересекает вторую данную окружность S2 , то каждая точка C пересечения является второй вершиной искомого равностороннего треугольника. Тогда вершина B — образ точки C при повороте вокруг точки A в противоположном направлении.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6706

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .