Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

У отца спросили, сколько лет двум его сыновьям. Отец ответил, что если к произведению их возрастов добавить сумму этих возрастов, то получится 34.
Сколько лет сыновьям?

Вниз   Решение


В норке живёт семья из 24 мышей. Каждую ночь ровно четыре из них отправляются на склад за сыром.
Может ли так получиться, что в некоторый момент времени каждая мышка побывала на складе с каждой ровно по одному разу?

ВверхВниз   Решение


Автор: Вавилов В.

Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой l так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная l, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой l так, чтобы другие их катеты лежали на прямой l, то также найдётся прямая, параллельная l , пересекающая их по равным отрезкам.

ВверхВниз   Решение


Даны три вектора , и . Докажите, что вектор перпендикулярен вектору (· ) - (· ) .

ВверхВниз   Решение


Метрополитен города Глупова состоит из единственной одноколейной линии. В нулевой момент времени с начальной и конечной станций этой линии навстречу друг другу начинают двигаться два поезда. Их движение подчиняется следующим правилам.
    Отъезжая со станции, поезд сначала разгоняется, потом некоторое (возможно нулевое) время движется с максимальной скоростью, затем замедляется и, в конце концов, останавливается на очередной станции.
    Поезда останавливаются на всех промежуточных станциях метрополитена.
    На каждой из станций поезда стоят одно и тоже фиксированное время.
    Поезда разгоняются и замедляются с одинаковым, постоянным ускорением.
    Поезда имеют одинаковую максимальную скорость.
    Поезда всегда разгоняются до максимальной скорости, если это не мешает остановиться на следующей станции. Иначе они разгоняются, пока это возможно, а затем сразу же начинают тормозить.

Требуется определить, где и когда поезда столкнутся. «Где» определяется расстоянием от начальной станции до места столкновения, «когда» – временем, когда произойдет столкновение.

Входные данные

В первой строке входного файла содержится целое число N (2 ≤ N ≤ 100) – количество станций на линии. Во второй строке записано N-1 вещественное число – расстояние от начальной станции до второй, от начальной до третьей, ..., от начальной до конечной станции. В третьей строке файла записаны три вещественных числа A, V, S – ускорение, максимальная скорость и время пребывания поезда на станции соответственно.

Выходные данные

В выходной файл вывести расстояние и время с точностью до двух знаков после десятичной точки.

Пример входного файла

3
0.25 2.25
1 1 1

Пример выходного файла

0.38 2.50

ВверхВниз   Решение


Фигура мамонт бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?

ВверхВниз   Решение


В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.

Вверх   Решение

Задача 116218
Темы:    [ Две пары подобных треугольников ]
[ Вписанный угол равен половине центрального ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10
Из корзины
Прислать комментарий

Условие

В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.


Решение

Заметим, что  ∠ADB = ∠DBC  (см. рис.). С другой стороны,  ∠APB = 2∠ADB.  Аналогично  ∠DQC = 2∠DBC, а значит,   ∠APB = ∠DQC.

Следовательно, равнобедренные треугольники APB и DQC подобны. Поэтому  ∠KAP = ∠KDQ  и  AP : DQ = AB : DC.  Вместе с тем из теоремы о пропорциональных отрезках  AK : DK = AB : DC,  поэтому треугольники APK и DQK подобны по двум сторонам и углу между ними. Значит,
PKA = ∠QKD.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2011
Номер 74
класс
Класс 9
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .