ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть? По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г. Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 32 плашки и сложить из них квадрат 8×8 так, чтобы концы диагоналей нигде не совпали? Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что OM = ON и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если ∠LOM = 55° и ∠KON = 90°. Найдите площадь трапеции ABCD с боковой стороной CD = 3, если расстояния от вершин A и B до прямой CD равны 5 и 7 соответственно. В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны. Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ. В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов. Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой? Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3. В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A. Двое играющих по очереди пишут – каждый на своей половине доски – по одному натуральному числу (повторения разрешаются) так, чтобы сумма всех чисел на доске не превосходила 10000. После того, как сумма всех чисел на доске становится равной 10000, игра заканчивается подсчетом суммы всех цифр на каждой половине. Выигрывает тот, на чьей половине сумма цифр меньше (при равных суммах – ничья). Может ли кто-нибудь из игроков выиграть, как бы ни играл противник? Два совершенно одинаковых катера, имеющих одинаковую скорость в стоячей воде, проходят по двум различным рекам одинаковое расстояние (по течению) и возвращаются обратно (против течения). В какой реке на эту поездку потребуется больше времени: в реке с быстрым течением или в реке с медленным течением? Найдите площадь трапеции ABCD с боковой стороной BC = 5, если расстояния от вершин A и D до прямой BC равны 3 и 7 соответственно. В море плавает предмет, имеющий форму выпуклого многогранника. На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC. |
Задача 116375
УсловиеНа наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC. РешениеТреугольник BPC – равнобедренный, поэтому биссектриса угла B совпадает с серединным перпендикуляром к стороне CP. Аналогично биссектриса угла A совпадает с серединным перпендикуляром к отрезку CQ. Но центр вписанной окружности треугольника ABC лежит на пересечении упомянутых биссектрис, а центр описанной окружности треугольника PQC – на пересечении упомянутых серединных перпендикуляров. ЗамечанияБаллы: Турнир городов – 3, Регата – 6. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке