Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Вниз   Решение


Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.

ВверхВниз   Решение


Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

Вверх   Решение

Задача 116951
Темы:    [ Числовые неравенства. Сравнения чисел. ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?


Решение

Пусть a – наибольшее из данных 2013 различных натуральных чисел. Тогда  a ≥ 2013,  поэтому  a² ≥ 2013a.  Но сумма всех остальных чисел не превосходит 2012a.


Ответ

Не существуют.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2012-2013
этап
1
Вариант 3
класс
Класс 11
Задача
Номер 11.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .