Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Делимое в шесть раз больше делителя, а делитель в шесть раз больше частного. Чему равны делимое, делитель и частное?

Вниз   Решение


В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная, отрезок которой внутри треугольника равен b.
Найдите площадь треугольника, отсечённого этой касательной.

ВверхВниз   Решение


Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали?

ВверхВниз   Решение


В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

ВверхВниз   Решение


Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.

ВверхВниз   Решение


На стороны BC и CD параллелограмма ABCD (или на их продолжения) опущены перпендикуляры AM и AN.
Докажите, что треугольники MAN и ABC подобны.

ВверхВниз   Решение


В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина A окажется восточнее двух других вершин.

ВверхВниз   Решение


Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

ВверхВниз   Решение


На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?

ВверхВниз   Решение


Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?

ВверхВниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Вверх   Решение

Задача 30320
Тема:    [ Правило произведения ]
Сложность: 2
Классы: 5,6,7
Из корзины
Прислать комментарий

Условие

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?


Ответ

23 = 8  последовательностей.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 3
Название Комбинаторика-1
Тема Классическая комбинаторика
задача
Номер 007

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .