Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фомин Д.

Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?

Вниз   Решение


Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно  [α/d].

ВверхВниз   Решение


Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Врун всегда лжёт, Хитрец говорит правду или ложь, когда захочет, а Переменчик говорит то правду, то ложь попеременно. Путешественник встретил Вруна, Хитреца и Переменчика, которые знают друг друга. Сможет ли он, задавая им вопросы, выяснить, кто есть кто?

ВверхВниз   Решение


Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

ВверхВниз   Решение


В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра AD . Найдите расстояние от середины ребра AB до плоскости P , если ребро куба равно 3.

ВверхВниз   Решение


В треугольнике ABC стороны AC и BC не равны. Докажите, что биссектриса угла C делит пополам угол между медианой и высотой, проведёнными из вершины C, тогда и только тогда, когда $ \angle$C = 90o.

ВверхВниз   Решение


Бывают ли натуральные числа, произведение цифр которых равно 1986?

Вверх   Решение

Задача 32059
Темы:    [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Бывают ли натуральные числа, произведение цифр которых равно 1986?


Решение

1986 = 2·3·331.  331 – простое число. Из теоремы о единственности разложения на простые множители следует, что одна из этих цифр делится на 331. Это, очевидно, невозможно.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 09
Дата 1986
задача
Номер 01

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .