Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

На доске после занятия осталась запись:

  "Вычислить  t(0) − t(π/5) + t(/5) − t(/5) + ... + t(/5) − t(/5),  где  t(x) = cos5x + *cos4x + *cos3x + *cos2x + *cosx + *".
Увидев её, студент мехмата сказал товарищу, что он может вычислить эту сумму, даже не зная значений стёртых с доски коэффициентов (вместо них в нашей записи *). Не ошибается ли он?

Вниз   Решение


Пусть a – положительный корень уравнения  x2017x – 1 = 0,  а b – положительный корень уравнения  y4034y = 3a.
  а) Сравните a и b.
  б) Найдите десятый знак после запятой числа  |a – b|.

ВверхВниз   Решение


В сумме

П,Я + Т,Ь + Д,Р + О,Б + Е,Й

все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.

ВверхВниз   Решение


В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены  n² + 1  отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
  а) хотя бы один треугольник;
  б) не менее n треугольников.

ВверхВниз   Решение


Ваня записал несколько простых чисел, использовав ровно по одному разу все цифры от 1 до 9. Сумма этих простых чисел оказалась равной 225.
Можно ли, использовав ровно по одному разу те же цифры, записать несколько простых чисел так, чтобы их сумма оказалась меньше?

ВверхВниз   Решение


Аня ждёт автобус. Какое событие имеет наибольшую вероятность?
  А = {Аня ждёт автобус не меньше минуты},
  В = {Аня ждёт автобус не меньше двух минут},
  С = {Аня ждёт автобус не меньше пяти минут}.

ВверхВниз   Решение


Даны параллелограмм ABCD и такая точка K, что  AK = BD.  Точка M – середина CK. Докажите, что  ∠BMD = 90°.

ВверхВниз   Решение


Петя сложил 100 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?

ВверхВниз   Решение


Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

ВверхВниз   Решение


На вписанной окружности треугольника ABC, касающейся стороны AC в точке S, нашлась такая точка Q, что середины отрезков AQ и QC также лежат на вписанной окружности. Докажите, что QS – биссектриса угла AQC.

ВверхВниз   Решение


Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

ВверхВниз   Решение


Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

ВверхВниз   Решение


На прямой даны точки A1, ..., An и B1, ..., Bn–1. Докажите, что     = 1.

ВверхВниз   Решение


Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые – направо, а остальные – кругом.
Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?

Вверх   Решение

Задача 35732
Тема:    [ Соображения непрерывности ]
Сложность: 3
Классы: 7,8
Из корзины
Прислать комментарий

Условие

Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые – направо, а остальные – кругом.
Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?


Подсказка

Двигайте сержанта вдоль строя. Число стоящих лицом к сержанту при этом меняется не более чем на 1.


Решение

  Для каждого положения сержанта в строю вычислим разность d между количеством человек, стоящих слева от сержанта к нему лицом, и количеством человек, стоящих справа от сержанта к нему лицом. Посмотрим, как это число меняется при сдвиге сержанта на одно место вправо. Если он "проходит" новобранца, стоявшего к нему спиной, то d увеличивается на 1. Если сержант "проходит" новобранца, стоявшего к нему лицом, то d уменьшается на 1. Иначе d не меняется.
  Ясно также, что, когда сержант стоит крайним слева, d неположительно, а когда он стоит крайним справа, d неотрицательно. Поскольку на каждом шаге d меняется не более чем на 1, где-то "по дороге" оно примет значение 0. В этом положении с обеих сторон от сержанта лицом к нему находится поровну новобранцев.


Ответ

Всегда.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .