Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.

Вниз   Решение


На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b .

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC взяты точки E и F. Прямые EF и BC пересекаются в точке S. Точки M и N – середины отрезков BC и EF соответственно. Прямая, проходящая через вершину A и параллельная MN, пересекает BC в точке K. Докажите, что  BK : CK = FS : ES.

ВверхВниз   Решение


Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?

ВверхВниз   Решение


Катеты прямоугольного треугольника равны 15 и 20. Найдите расстояние от центра вписанной окружности до высоты, опущенной на гипотенузу.

Вверх   Решение

Задача 52905
Темы:    [ Вписанные и описанные окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Катеты прямоугольного треугольника равны 15 и 20. Найдите расстояние от центра вписанной окружности до высоты, опущенной на гипотенузу.


Подсказка

Искомое расстояние равно расстоянию между основанием указанной высоты и точкой касания вписанной окружности с гипотенузой.


Решение

Пусть O — центр вписанной окружности, Q и P — точки касания с меньшим катетом BC и гипотенузой AB, CM — высота треугольника, OK — искомое расстояние. Если r — радиус вписанной окружности, то

r = $\displaystyle {\frac{BC + AC - AB}{2}}$ = $\displaystyle {\frac{20 + 15 - 25}{2}}$ = 5.

Поэтому

CQ = r = 5, BP = BQ = BC - CQ = 15 - 5 = 10,

BM = $\displaystyle {\frac{BC^{2}}{AB}}$ = $\displaystyle {\textstyle\frac{225}{25}}$ = 9,

OK = PM = BP - BM = 10 - 9 = 1.


Ответ

1.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 572

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .