ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC высота AH равна медиане BM.
Найдите угол MBC.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b . На сторонах AB и AC треугольника ABC взяты точки E и F. Прямые EF и BC пересекаются в точке S. Точки M и N – середины отрезков BC и EF соответственно. Прямая, проходящая через вершину A и параллельная MN, пересекает BC в точке K. Докажите, что BK : CK = FS : ES. Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?
Катеты прямоугольного треугольника равны 15 и 20. Найдите расстояние от центра вписанной окружности до высоты, опущенной на гипотенузу.
|
Задача 52905
Условие
Катеты прямоугольного треугольника равны 15 и 20. Найдите расстояние от центра вписанной окружности до высоты, опущенной на гипотенузу.
Подсказка
Искомое расстояние равно расстоянию между основанием указанной высоты и точкой касания вписанной окружности с гипотенузой.
Решение
Пусть O — центр вписанной окружности, Q и P — точки касания с меньшим катетом BC и гипотенузой AB, CM — высота треугольника, OK — искомое расстояние. Если r — радиус вписанной окружности, то
r =
Поэтому
CQ = r = 5, BP = BQ = BC - CQ = 15 - 5 = 10,
BM =
OK = PM = BP - BM = 10 - 9 = 1.
Ответ
1.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке