Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Пусть p – полупериметр остроугольного треугольника ABC, q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что  p : q = R : r,  где R и r – радиусы описанной и вписанной окружностей треугольника ABC.

Вниз   Решение


AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности.

ВверхВниз   Решение


В трапеции ABCD основание  AB = a,  основание  CD = b  (a < b).  Окружность, проходящая через вершины A, B и C, касается стороны AD.
Найдите диагональ AC.

ВверхВниз   Решение


Дано число x, большее 1. Обязательно ли имеет место равенство

[$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]?

ВверхВниз   Решение


Докажите, что две непересекающиеся окружности S1 и S2 (или окружность и прямую) можно при помощи инверсии перевести в пару концентрических окружностей.

ВверхВниз   Решение


Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

ВверхВниз   Решение


Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.

ВверхВниз   Решение


Найдите количество перестановок a1, a2, ... , a10 чисел 1,2,...,10, таких, что ai+1 не меньше, чем ai-1 (для i=1,2,...,9).

ВверхВниз   Решение


Из точки O на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.

ВверхВниз   Решение


Гениальные математики. а) Каждому из двух гениальных математиков сообщили по натуральному числу, причем им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: "Известно ли тебе мое число?" Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики предполагаются правдивыми и бессмертными.)
б) Как изменится число заданных вопросов, если с самого начала известно, что данные числа не превосходят 1000?

ВверхВниз   Решение


Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами.
При каких n такое возможно?

ВверхВниз   Решение


Окружности радиусов ta, tb, tc касаются внутренним образом описанной окружности треугольника ABC в его вершинах A, B, C и касаются друг друга внешним образом. Докажите, что

ta = $\displaystyle {\frac{Rh_a}{a+h_a}}$,    tb = $\displaystyle {\frac{Rh_b}{b+h_b}}$,    tc = $\displaystyle {\frac{Rh_c}{c+h_c}}$.

ВверхВниз   Решение


Итерационная формула Герона. Докажите, что последовательность чисел {xn}, заданная условиями

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{k}{x_n}}\right.$xn + $\displaystyle {\frac{k}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{k}{x_n}}\right)$,

сходится. Найдите предел этой последовательности.

ВверхВниз   Решение


Трапеция KLMN с основаниями KN и LM вписана в окружность, центр которой лежит на основании KN. Диагональ KM трапеции равна 4, а боковая сторона KL равна 3. Найдите основание LM.

ВверхВниз   Решение


Равные отрезки AB и CD пересекаются в точке K. Известно, что  AC || BD.  Докажите, что треугольники AKC и BKD равнобедренные.

Вверх   Решение

Задача 53458
Темы:    [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Равные отрезки AB и CD пересекаются в точке K. Известно, что  AC || BD.  Докажите, что треугольники AKC и BKD равнобедренные.


Подсказка

Через точку A проведите прямую, параллельную CD.


Решение

Через точку A проведём прямую, параллельную CD, до пересечения с продолжением отрезка BD в точке M. Треугольники AMD и DCA равны по стороне
(AD – общая) и двум прилежащим к ней углам, поэтому  AM = CD = AB.  Значит, треугольник BAM – равнобедренный. Следовательно,
KDB = ∠AMB = ∠ABM = ∠KBD,  то есть треугольник DKB также равнобедренный. Далее очевидно.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1187

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .