Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

В угол вписаны две окружности; у них есть общая внутренняя касательная T1T2 (T1 и T2 — точки касания), которая пересекает стороны угла в точках A1 и A2. Докажите, что A1T1 = A2T2 (или, что эквивалентно, A1T2 = A2T1).

Вниз   Решение


В окружности с центром O проведены параллельные хорды PQ и RS, диаметр SE и хорда RE. Хорда RE пересекает хорду PQ в точке F, из точки F опущен перпендикуляр FH на SE. Известно, что радиус окружности равен r, а  EH = 3r/8.  Найдите расстояние от середины отрезка EO до середины хорды RQ.

ВверхВниз   Решение


Автор: Mudgal A.

В треугольнике $ABC$ точка $M$ – середина дуги $BAC$ описанной окружности $\Omega$, $I$ – центр вписанной окружности, $N$ – вторая точка пересечения прямой $AI$ с $\Omega$, $E$ – точка касания стороны $BC$ с соответствующей вневписанной окружностью, $Q$ – вторая точка пересечения окружности $IMN$ с прямой, проходящей через $I$ и параллельной $BC$. Докажите, что прямые $AE$ и $NQ$ пересекаются на $\Omega$.

ВверхВниз   Решение


В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.

ВверхВниз   Решение


Докажите, что предпоследняя цифра степени тройки всегда чётна.

ВверхВниз   Решение


Три равных окружности S1 , S2 , S3 попарно касаются друг друга, и вокруг них описана окружность S , которая касается всех трёх. Докажите, что для любой точки M окружности S касательная, проведённая из точки M к одной из трёх окружностей S1 , S2 , S3 , равна сумме касательных, проведённых из точки M к двум другим окружностям.

ВверхВниз   Решение


Найдите углы треугольника, если известно, что медиана и высота, выходящие из вершины одного из его углов, делит этот угол на три равные части.

Вверх   Решение

Задача 53696
Темы:    [ Вспомогательные равные треугольники ]
[ Прямоугольные треугольники ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Найдите углы треугольника, если известно, что медиана и высота, выходящие из вершины одного из его углов, делит этот угол на три равные части.


Решение

  Пусть высота CD и медиана CM делят угол C треугольника ABC на три равные части. Предположим, что точка D расположена между B и M. Обозначим  ∠BCD = ∠DCM = ∠ACM = α.  Поскольку в треугольнике BCM высота CD является биссектрисой, то этот треугольник равнобедренный, поэтому CD – медиана треугольника BCM и  BD = DM.

  Первый способ. Пусть K – проекция точки M на AC. Тогда из равенства прямоугольных треугольников CKM и CDM (по гипотенузе и острому углу) следует, что  MK = DM = ½ BM = ½ AM.
  Значит,  ∠MAK = 30°.  Следовательно,  2α = ∠ACD = 90° – ∠MAK = 60°,  α = 30°,  ∠C = 3α = 90°,  ∠B = 60°.

  Второй способ. Биссектриса CM треугольника ACD делит сторону AD на отрезки, пропорциональные сторонам AC и CD, то есть
CD : AC = DM : AM = DM : BM = ½.
  Значит,  ∠CAD = 30°.  Следовательно,   2α = ∠ACD = 90° – ∠CAD = 60°,  α = 30°.


Ответ

30°, 60°, 90°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1430

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .