ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В угол вписаны две окружности; у них есть общая внутренняя касательная T1T2 (T1 и T2 — точки касания), которая пересекает стороны угла в точках A1 и A2. Докажите, что A1T1 = A2T2 (или, что эквивалентно, A1T2 = A2T1).
В окружности с центром O проведены параллельные хорды PQ и RS, диаметр SE и хорда RE. Хорда RE пересекает хорду PQ в точке F, из точки F опущен перпендикуляр FH на SE. Известно, что радиус окружности равен r, а EH = 3r/8. Найдите расстояние от середины отрезка EO до середины хорды RQ. В треугольнике $ABC$ точка $M$ – середина дуги $BAC$ описанной окружности $\Omega$, $I$ – центр вписанной окружности, $N$ – вторая точка пересечения прямой $AI$ с $\Omega$, $E$ – точка касания стороны $BC$ с соответствующей вневписанной окружностью, $Q$ – вторая точка пересечения окружности $IMN$ с прямой, проходящей через $I$ и параллельной $BC$. Докажите, что прямые $AE$ и $NQ$ пересекаются на $\Omega$.
В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.
Докажите, что предпоследняя цифра степени тройки всегда чётна. Три равных окружности S1 , S2 , S3 попарно касаются друг друга, и вокруг них описана окружность S , которая касается всех трёх. Докажите, что для любой точки M окружности S касательная, проведённая из точки M к одной из трёх окружностей S1 , S2 , S3 , равна сумме касательных, проведённых из точки M к двум другим окружностям. Найдите углы треугольника, если известно, что медиана и высота, выходящие из вершины одного из его углов, делит этот угол на три равные части. |
Задача 53696
УсловиеНайдите углы треугольника, если известно, что медиана и высота, выходящие из вершины одного из его углов, делит этот угол на три равные части. РешениеПусть высота CD и медиана CM делят угол C треугольника ABC на три равные части. Предположим, что точка D расположена между B и M. Обозначим ∠BCD = ∠DCM = ∠ACM = α. Поскольку в треугольнике BCM высота CD является биссектрисой, то этот треугольник равнобедренный, поэтому CD – медиана треугольника BCM и BD = DM. Первый способ. Пусть K – проекция точки M на AC. Тогда из равенства прямоугольных треугольников CKM и CDM (по гипотенузе и острому углу) следует, что MK = DM = ½ BM = ½ AM. Второй способ. Биссектриса CM треугольника ACD делит сторону AD на отрезки, пропорциональные сторонам AC и CD, то есть Ответ30°, 60°, 90°. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке