Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Жуков Г.

Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения  P(n1)P(n2)...P(nk).  По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?

Вниз   Решение


На плоскости дано n$ \ge$3 точек. Пусть d — наибольшее расстояние между парами этих точек. Докажите, что имеется не более n пар точек, расстояние между которыми равно d.

ВверхВниз   Решение


Диагональ равнобедренной трапеции перпендикулярна боковой стороне. Найдите острый угол и большее основание трапеции, если меньшее основание равно 3, а высота трапеции равна 2.

ВверхВниз   Решение


Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

ВверхВниз   Решение


Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

ВверхВниз   Решение


Составить две прогрессии: арифметическую и геометрическую, каждую из четырёх членов; при этом, если сложить одноимённые члены обеих прогрессий, то должны получиться числа: 27, 27, 39, 87.

ВверхВниз   Решение


Треугольник ABC не имеет тупых углов. На стороне AC этого треугольника взята точка D так, что  AD = ¾ AC.  Найдите угол A, если известно, что прямая BD разбивает треугольник ABC на два подобных треугольника.

Вверх   Решение

Задача 53795
Темы:    [ Подобные треугольники (прочее) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Треугольник ABC не имеет тупых углов. На стороне AC этого треугольника взята точка D так, что  AD = ¾ AC.  Найдите угол A, если известно, что прямая BD разбивает треугольник ABC на два подобных треугольника.


Подсказка

Докажите, что  BDAC.


Решение

  Если угол ADB – тупой, то в треугольнике CBD один из углов тупой. Тогда и в треугольнике ABC один из углов тупой, что противоречит условию. Аналогично угол ADB не может быть острым. Следовательно,  ∠ADB = 90°.
  Если  ∠BCD = ∠BAD,  то треугольник ABC – равнобедренный. Тогда его высота BD является медианой, что противоречит условию. Поэтому
BCD = ∠ABD  и ∠DBC = ∠BAD,  то есть треугольник ABD подобен треугольнику BCD. Следовательно,  ∠B = ∠ABD + ∠DBC = ∠ABD + ∠BAD = 90°.
  AD : CD = AB² : BC²,  значит,  AB : BC = : 1,  то есть  ∠A = 30°.


Ответ

30°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1559

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .