Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть  x = sin 18°.  Докажите, что  4x² + 2x = 1.

Вниз   Решение


Докажите, что уравнение  a1 sin x + b1 cos x + a2 sin 2x + b2 cos 2x + ... + an sin nx + bn cos nx = 0  имеет хотя бы один корень при любых значениях a1, b1, a2, b2, ..., an, bn.

ВверхВниз   Решение


В треугольнике ABC известно, что  AB = BC,  AC = 10.  Из середины D стороны AB проведён перпендикуляр DE к стороне AB до пересечения со стороной BC в точке E. Периметр треугольника ABC равен 40. Найдите периметр треугольника AEC.

ВверхВниз   Решение


В треугольнике боковая сторона равна 16 и образует с основанием угол в 60o; другая боковая сторона равна 14. Найдите основание.

ВверхВниз   Решение


В равнобедренную трапецию вписана окружность.
Докажите, что отношение площади трапеции к площади круга равно отношению периметра трапеции к длине окружности.

ВверхВниз   Решение


Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны.
Найдите радиус окружности.

ВверхВниз   Решение


Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна.

ВверхВниз   Решение


Докажите, что  cos2($ \alpha$/2) = p(p - a)/bc и  sin2($ \alpha$/2) = (p - b)(p - c)/bc.

ВверхВниз   Решение


Равнобедренные треугольники ABC  (AB = BC)  и   A1B1C1  (A1B1 = B1C1)  подобны и  AB : A1B1 = 2 : 1.  Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём   A1B1AC.  Найдите угол B.

Вверх   Решение

Задача 53824
Темы:    [ Подобные треугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тригонометрические уравнения ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Равнобедренные треугольники ABC  (AB = BC)  и   A1B1C1  (A1B1 = B1C1)  подобны и  AB : A1B1 = 2 : 1.  Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём   A1B1AC.  Найдите угол B.


Подсказка

Докажите, что  A1C1BC  и составьте тригонометрическое уравнение относительно угла при основании равнобедренного треугольника ABC.


Решение

  Пусть  A1B1 = B1C1 = 1,  ∠A = α.  Тогда  ∠A1C1C = (90° – α) + α = 90°,  AA1 = ctg α,  A1C1 = 2 cosα,  AC = 2A1C1 = 4 cosα,   A1C = A1C1/sin α = 2ctg α.
Так как  AC = AA1 + A1C,  то  3ctg α = 4cos α,  то есть  sin α = ¾,  откуда  cos∠B = cos(180° – 2α) = – cos 2α = 2sin²α – 1 = 1/8.


Ответ

arccos 1/8.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1588

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .