Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Смешарики живут на берегах пруда в форме равностороннего треугольника со стороной 600 м. Крош и Бараш живут на одном берегу в 300 м друг от друга. Летом Лосяшу до Кроша идти 900 м, Барашу до Нюши – тоже 900 м. Докажите, что зимой, когда пруд замёрзнет и можно будет ходить прямо по льду, Лосяшу до Кроша снова будет идти столько же метров, сколько Барашу до Нюши.

Вниз   Решение


Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25.

ВверхВниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


Существует ли отличный от куба шестигранник, у которого все грани являются равными ромбами?

ВверхВниз   Решение


Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки?

ВверхВниз   Решение


Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит  .

ВверхВниз   Решение


Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

Вверх   Решение

Задача 53924
Темы:    [ Диаметр, основные свойства ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.


Подсказка

Пусть O – центр окружности, AB и CD – данные хорды, M и N – их середины, K – точка пересечения хорд. Докажите равенство прямоугольных треугольников KOM и NMO.


Решение

  Пусть O – центр окружности, AB и CD – данные хорды, не являющиеся диаметрами, M и N – их середины, K – точка пересечения хорд.

  Первый способ. Прямая ON проходит через середину хорды CD, поэтому  ONCD, а так как  ABCD,  то  ON || AB.  Аналогично,  OM || CD.  Следовательно,  OMON.  Из равенства прямоугольных треугольников OMK и KNO (по гипотенузе и острому углу) следует, что  KN = MO,  значит, прямоугольные треугольники KOM и NMO равны по двум катетом. Следовательно,  OK = MN.

  Второй способ. Четырёхугольник OMKN – прямоугольник, следовательно, его диагонали OK и MN равны между собой.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1687

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .