ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD = 3:2 . Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB , если AB:CD = 3:2 . Касательная и секущая, проведённые из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, а внутренняя часть секущей равна 10. Найдите радиус окружности. Докажите, что если a + b + c = 0, то 2(a5 + b5 + c5) = 5abc(a2 + b2 + c2).
Точка D лежит на стороне AB треугольника ABC, точки E и F — на стороне BC этого треугольника, а точка P — на стороне AC. Отрезок AD составляет две трети стороны AB, отрезок BF составляет три пятых стороны BC, отрезок BE составляет одну пятую стороны BC, а точка P делит сторону AC пополам. Найдите отношение площади четырёхугольника DEFP к площади треугольника ABC.
С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны. Окружность касается двух параллельных прямых и их секущей. Отрезок секущей, заключённый между параллельными прямыми делится точкой касания в отношении 1 : 3. Под каким углом секущая пересекает каждую из параллельных прямых? |
Задача 54055
УсловиеОкружность касается двух параллельных прямых и их секущей. Отрезок секущей, заключённый между параллельными прямыми делится точкой касания в отношении 1 : 3. Под каким углом секущая пересекает каждую из параллельных прямых? ПодсказкаОтрезок секущей, заключённый между параллельными прямыми, виден из центра окружности под прямым углом. Решение Пусть прямая l пересекает данные параллельные прямые a и b соответственно в точках A и B, а окружность с центром O касается прямых a, b и l соответственно в точках C, D и M. Поскольку OA и OB — биссектрисы углов CAB и ABD, а сумма этих углов равна 180°, то ∠AOB = 90°. Ответ60°. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке