ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Докажите, что барицентрические координаты точки X,
лежащей внутри треугольника ABC, равны
(SBCX : SCAX : SABX).
Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы? Найти все рациональные положительные решения уравнения xy = yx (x ≠ y). Имеется неограниченное количество плиток в форме многоугольника
M. Будем говорить, что из этих плиток можно сложить паркет,
если ими можно покрыть круг сколь угодно большого радиуса так,
чтобы не было ни просветов, ни перекрытий.
Числа a, b, c и d таковы, что a² + b² + c² + d² = 4. Докажите, что (2 + a)(2 + b) ≥ cd. В классе 33 ученика, всем вместе 430 лет. Дан отрезок AB. Пусть C – произвольная точка на серединном перпендикуляре к AB; O – точка на описанной окружности треугольника ABC, противоположная C; эллипс с центром O касается прямых AB, BC, CA. Найдите геометрическое место точек касания эллипса с прямой BC. Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении 1 : 2. |
Задача 54639
УсловиеПостройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении 1 : 2. ПодсказкаРассмотрите образ одной из вершин треугольника при симметрии относительно указанной медианы (или примените теорему синусов). Решение Первый способ. Предположим, что нужный треугольник ABC построен. Пусть BC = a и AC = b – его данные стороны, CM – медиана, ∠ACM = α,
Второй способ. Применив теорему синусов к треугольникам BCM и ACM, находим, что a sin 2α = b sin α. Поэтому cos α = b/2a. Следовательно, угол α можно построить. Поскольку 0 < 3α < 180°, то 0 < α < 60°. Поэтому задача имеет решение (и притом единственное) при a < b. Замечания6 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке