Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Разложите функции     и     (n ≥ 1)  в цепные дроби.
Определения многочленов Фибоначчи Fn(x) и Люка Ln(x) смотри, например, здесь.

Вниз   Решение


Сколько целых чисел от 1 до 1997 имеют сумму цифр, делящуюся на 5?

ВверхВниз   Решение


Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

ВверхВниз   Решение


Автор: Фольклор

Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел?

ВверхВниз   Решение


Площадь треугольника ABC равна S. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC.

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Докажите, что медиана, проведённая к стороне c, равна $ {\frac{1}{2}}$$ \sqrt{2a^{2}+2b^{2}-c^{2}}$.

Вверх   Решение

Задача 55267
Темы:    [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Стороны треугольника равны a, b, c. Докажите, что медиана, проведённая к стороне c, равна $ {\frac{1}{2}}$$ \sqrt{2a^{2}+2b^{2}-c^{2}}$.


Подсказка

Достройте данный треугольник до параллелограмма.


Решение

Пусть AB = c, BC = a, AC = b — стороны треугольника ABC; CM = m — медиана треугольника.

На продолжении медианы CM за точку M отложим отрезок MD, равный CM. Тогда ACBD — параллелограмм. Поэтому

CD2 + AB2 = 2(AC2 + BC2), или 4m2 + c2 = 2(a2 + b2).

Отсюда находим, что

m2 = $\displaystyle {\textstyle\frac{1}{4}}$(2a2 + 2b2 - c2).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4014

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .