ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Правильный (2n+1)-угольник разбили диагоналями на 2n – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных. В равнобедренном треугольнике MPK с основанием PM ∠P = arctg 5/12. Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и AP = 6/5. Найдите площадь треугольника HAE. Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969. Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны. В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F. Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника. Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой. Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены. В некоторых клетках квадратной таблицы n×n стоят звёздочки. Известно, что если вычеркнуть любой набор строк (только не все), то найдётся столбец ровно с одной невычеркнутой звёздочкой. (В частности, если строки совсем не вычёркивать, то столбец ровно с одной звёздочкой существует.) Доказать, что если вычеркнуть любой набор столбцов (только не все), то найдётся строка ровно с одной невычеркнутой звёздочкой. На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если KM = NL, то KO = PL. |
Задача 56470
УсловиеНа продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если KM = NL, то KO = PL. РешениеПроведём через точку M прямую EF, параллельную CD
(точки E и F лежат на прямых BC и AD). Тогда
PL : PK = BL : KD и Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке