ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В трёхгранный угол, все плоские углы которого равны α , помещена сфера так, что она касается всех рёбер трёхгранного угла. Грани трёхгранного угла пересекают сферу по окружностям радиуса r . Найдите радиус сферы. В 2n-угольнике (n нечетно)
A1...A2n,
описанном около окружности с центром O, диагонали
A1An + 1, A2An + 2,..., An - 1A2n - 1 проходят через точку O.
Докажите, что и диагональ AnA2n проходит через точку O.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM. |
Задача 56705
УсловиеНа стороне BC треугольника ABC взята точка D. Окружность S1 касается
отрезков BE и EA и описанной окружности, окружность S2 касается отрезков
CE и EA и описанной окружности. Пусть I, I1, I2 и r, r1, r2
-- центры и радиусы вписанной окружности и окружностей S1, S2;
РешениеПусть E1 и E2 — основания перпендикуляров, опущенных из точек I1 и
I2 на прямую AC. Согласно задаче 3.46 точка I является точкой
пересечения прямой, проходящей через точку E1 и точку касания прямой BD и
окружности S1, и прямой, проходящей через точку E2 и точку касания
прямой BD и окружности S2. Пусть F1 — точка пересечения прямых
E1I1 и E2I, F2 — точка пересечения прямых E2I2 и E1I.
Ясно, что
DI1
I1I : II2 = E1F1 : E2F2 = E1E2tg
Пусть E — проекция точки I на прямую AC. Тогда r = IE. Согласно задаче 1.1 б)
IE =
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке