|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольник вписан квадрат так, что две его вершины лежат на основании, а две другие вершины — на боковых сторонах треугольника. Доказать, что сторона квадрата меньше 2r, но больше |
Задача 56708
УсловиеТри окружности попарно касаются внешним образом в точках A, B и C. Докажите, что описанная окружность треугольника ABC перпендикулярна всем трем окружностям.РешениеПусть A1, B1 и C1 — центры данных окружностей, причем точки A, B и C лежат на отрезках B1C1, C1A1 и A1B1 соответственно. Так как A1B = A1C, B1A = B1C и C1A = C1B, то A, B и C — точки касания вписанной окружности треугольника A1B1C1 с его сторонами (см. задачу 5.1). Таким образом, радиусы A1B, B1C и C1A данных окружностей касаются описанной окружности треугольника ABC.Источники и прецеденты использования
|
||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|