Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

Вниз   Решение


На одной прямой взяты точки A1, B1 и C1, а на другой — точки A2, B2 и C2. Прямые A1B2 и A2B1B1C2 и B2C1C1A2 и C2A1 пересекаются в точках C, A и B соответственно. Докажите, что точки A, B и C лежат на одной прямой (Папп).

ВверхВниз   Решение


На сторонах AB, BC и CD четырехугольника ABCD (или на их продолжениях) взяты точки K, L и M. Прямые KL и AC пересекаются в точке PLM и BD — в точке Q. Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.

ВверхВниз   Решение


Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки.

ВверхВниз   Решение


Докажите, что среди любых 10 целых чисел найдётся несколько, сумма которых делится на 10.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O.

ВверхВниз   Решение


а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.

Вверх   Решение

Задача 57262
Тема:    [ Построения (прочее) ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.

Решение

а) Если прямая l не пересекает отрезок AB, то ABB1A1 — параллелограмм и l| AB. Если прямая l пересекает отрезок AB, то AA1BB1 — параллелограмм и l проходит через середину отрезка AB.
б) Одна из искомых прямых параллельна прямой AB, а другая проходит через середину AB.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 8
Название Построения
Тема Построения
параграф
Номер 10
Название Разные задачи
Тема Построения (прочее)
задача
Номер 08.064

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .