Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

В последовательности цифр 1234096... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр.
Встретятся ли в этой последовательности подряд четыре цифры 8123?

Вниз   Решение


              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

ВверхВниз   Решение


На медиане BM и на биссектрисе BK треугольника ABC (или на их продолжениях) взяты точки D и E так, что DK || AB и EM || BC. Докажите, что ED$ \bot$BK.

ВверхВниз   Решение


Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.

ВверхВниз   Решение


Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.

ВверхВниз   Решение


В трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём  MC = 2MDN – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции.

ВверхВниз   Решение


На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Найдите радиус окружности, если высота, опущенная на основание треугольника, равна 3.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по стороне, притиволежащему углу и медиане, проведённой из вершины одного из прилежащих углов.

ВверхВниз   Решение


Окружность с центром в точке O делит отрезок AO пополам. Найдите угол между касательными, проведёнными из точки A.

ВверхВниз   Решение


Одна из двух прямых, проходящих через точку M, касается окружности в точке C, а вторая пересекает эту окружность в точках A и B, причём A — середина отрезка BM. Известно, что MC = 2 и $ \angle$BMC = 45o. Найдите радиус окружности.

ВверхВниз   Решение


a, b и c - длины сторон произвольного треугольника. Пусть  p = $ {\frac{a}{b}}$ + $ {\frac{b}{c}}$ + $ {\frac{c}{a}}$ и  q = $ {\frac{a}{c}}$ + $ {\frac{c}{b}}$ + $ {\frac{b}{a}}$. Докажите, что | p - q| < 1.

Вверх   Решение

Задача 57314
Тема:    [ Алгебраические задачи на неравенство треугольника ]
Сложность: 4
Классы: 8
Из корзины
Прислать комментарий

Условие

a, b и c - длины сторон произвольного треугольника. Пусть  p = $ {\frac{a}{b}}$ + $ {\frac{b}{c}}$ + $ {\frac{c}{a}}$ и  q = $ {\frac{a}{c}}$ + $ {\frac{c}{b}}$ + $ {\frac{b}{a}}$. Докажите, что | p - q| < 1.

Решение

Легко проверить, что abc| p - q| = |(b - c)(c - a)(a - b)|. А так как  | b - c| < a,| c - a| < b и | a - b| < c, то  |(b - c)(c - a)(a - b)| < abc.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 2
Название Алгебраические задачи на неравенство треугольника
Тема Алгебраические задачи на неравенство треугольника
задача
Номер 09.010

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .