Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Квадрат разрезали на n прямоугольников размером  ai×bii = 1, ..., n.
При каком наименьшем n в наборе  {a1, b1, ..., an, bn}  все числа могут оказаться различными?

Вниз   Решение


На сторонах BC и CD параллелограмма ABCD взяты точки K и L так, что BK : KC = CL : LD. Докажите, что центр масс треугольника AKL лежит на диагонали BD.

ВверхВниз   Решение


Даны точки A1,..., An. Рассмотрим окружность радиуса R, содержащую некоторые из них. Построим затем окружность радиуса R с центром в центре масс точек, лежащих внутри первой окружности, и т. д. Докажите, что этот процесс остановится, т. е. окружности начнут совпадать.

ВверхВниз   Решение


Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.

ВверхВниз   Решение


Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его.
а) Докажите, что p = n + 2m - 2.
б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.

ВверхВниз   Решение


Докажите, что если точку отразить симметрично относительно точек O1, O2 и O3, а затем еще раз отразить симметрично относительно этих же точек, то она вернется на место.

ВверхВниз   Решение


Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

Вверх   Решение

Задача 57337
Тема:    [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 3
Классы: 9
Из корзины
Прислать комментарий

Условие

Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

Решение

Согласно задаче 9.31  SABCD $ \leq$ (AB + CD)(BC + AD)/4. Так как  ab $ \leq$ (a + b)2/4, то  SABCD $ \leq$ (AB + CD + AD + BC)2/16 = 1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 5
Название Площадь треугольника не превосходит половины произведения двух сторон
Тема Площадь треугольника не превосходит половины произведения двух сторон
задача
Номер 09.032

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .