Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Точки A' и B' — образы точек A и B при инверсии относительно некоторой окружности. Докажите, что точки A , B , A' и B' лежат на одной окружности.

Вниз   Решение


В таблицу записано девять чисел:

Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:
a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её столбцов:   a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.

ВверхВниз   Решение


Докажите, что

$\displaystyle {\frac{1}{(p-a)(p-b)}}$ + $\displaystyle {\frac{1}{(p-b)(p-c)}}$ + $\displaystyle {\frac{1}{(p-c)(p-a)}}$ = $\displaystyle {\frac{1}{r^2}}$.


Вверх   Решение

Задача 57605
Тема:    [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3
Классы: 9
Из корзины
Прислать комментарий

Условие

Докажите, что

$\displaystyle {\frac{1}{(p-a)(p-b)}}$ + $\displaystyle {\frac{1}{(p-b)(p-c)}}$ + $\displaystyle {\frac{1}{(p-c)(p-a)}}$ = $\displaystyle {\frac{1}{r^2}}$.



Решение

Согласно задаче 12.18, а) 1/((p - b)(p - c)) = 1/rra. Остается сложить аналогичные равенства и воспользоваться результатом задачи 12.22.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 3
Название Вписанная, описанная и вневписанная окружности; их радиусы
Тема Вписанная, описанная и вневписанная окружности; их радиусы
задача
Номер 12.023

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .