ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус. В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.) Квадратная таблица из 49 клеток заполнена числами от 1 до 7 так, что в каждом столбце и в каждой строке встречаются все эти числа. Докажите, что если таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встречаются все эти числа. Постройте прямоугольный треугольник по катету и гипотенузе.
Докажите, что уравнение xy(x – y) + yz(y – z) + zx(z – x) = 6 имеет бесконечно много решений в целых числах. В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$. Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные. Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$ Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно p + q? Докажите, что если центр вписанной в четырехугольник
окружности совпадает с точкой пересечения диагоналей, то этот
четырехугольник — ромб.
На окружности с центром O даны точки
A1,..., An,
делящие ее на равные дуги, и точка X. Докажите, что
точки, симметричные X относительно прямых
OA1,..., OAn,
образуют правильный многоугольник.
Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов? Точка A расположена на расстоянии 50 см от центра
круга радиусом 1 см. Разрешается отразить точку симметрично
относительно любой прямой, пересекающей круг. Докажите, что:
а) за 25 отражений точку A можно к загнатьк внутрь
данного круга; б) за 24 отражения этого сделать нельзя.
|
Задача 57897
УсловиеТочка A расположена на расстоянии 50 см от центра
круга радиусом 1 см. Разрешается отразить точку симметрично
относительно любой прямой, пересекающей круг. Докажите, что:
а) за 25 отражений точку A можно к загнатьк внутрь
данного круга; б) за 24 отражения этого сделать нельзя.
РешениеПусть O — центр данного круга, DR — круг радиуса R с центром O. Докажем, что множеством образов точек DR при симметриях
относительно прямых, проходящих через D1, является круг DR + 2.
В самом деле, образы точки O при указанных симметриях заполняют
круг D2, а круги радиуса R с центрами в D2 заполняют круг DR + 2.
Поэтому за n отражений из точек D1 можно получить любую
точку из D2n + 1 и только эти точки. Остается заметить, что точку A
можно к загнатьк внутрь DR за n отражений тогда и только тогда,
когда за n отражений можно перевести некоторую точку из DR в A.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке