Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Обозначим корни уравнения  x² + px + q = 0  через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек  M(, q),  которые задаются условиями:
а)  x1 = 0,  x2 = 1;     б)  x1 ≤ 0,  x2 ≥ 2;     в)  x1 = x2;     г)  – 1 ≤ x1 ≤ 0,  1 ≤ x2 ≤ 2.

Вниз   Решение


В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
Найдите площадь треугольника ABC, если  AQ : AB = 2 : 3.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность данного радиуса, касающуюся двух данных окружностей.

ВверхВниз   Решение


Докажите, что для двух непересекающихся окружностей R1 и R2 цепочка из n касающихся окружностей (см. предыдущую задачу) существует тогда и только тогда, когда угол между окружностями T1 и T2, касающимися R1 и R2 в точках их пересечения с прямой, соединяющей центры, равен целому кратному угла 360o/n (рис.).


ВверхВниз   Решение


В классе учится меньше 50 школьников. За контрольную работу седьмая часть учеников получила пятёрки, третья – четвёрки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько было таких работ?

ВверхВниз   Решение


Точки  A1,..., A6 лежат на одной окружности, а точки K, L, M и N — на прямых  A1A2, A3A4, A1A6 и A4A5 соответственно, причем  KL| A2A3, LM| A3A6 и  MN| A6A5. Докажите, что  NK| A5A2.

ВверхВниз   Решение


Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами.

ВверхВниз   Решение


В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?

Вверх   Решение

Задача 61047
Темы:    [ Теорема Виета ]
[ Кубические многочлены ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?


Решение

  По формулам Виета сумма квадратов корней каждого из четырёх уравнений, включая комплексные, равна  (18/4)2 – 2·6 = 8,25.  Найдем количество действительных корней каждого из уравнений.
  Производная функции  f(x) = 4x3 – 18x2 + 24x  равна  12(x2 – 3x + 2)  и обращается в ноль в точках  x1 = 1  и  x2 = 2.  При этом  f(1) = 10,
f(2) = 8.

  а) Оба уравнения имеют по три корня (у второго есть кратный корень  x2 = 2).  Поэтому суммы их квадратов одинаковы.

  б) Оба уравнения имеют по одному корню, причем в силу возрастания функции f на участке  (2, + ∞)  корень второго уравнения больше.


Ответ

а) Одинакова;  б) у второго уравнения больше.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 5
Название Теорема Виета
Тема Неизвестная тема
задача
Номер 06.124

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .