Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Вниз   Решение


На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.

ВверхВниз   Решение


Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

ВверхВниз   Решение


В треугольнике ABC высота AH равна h, $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$. Найдите площадь треугольника ABC.

ВверхВниз   Решение


Если дан ряд из 15 чисел

a1, a2,..., a15, (1)

то можно написать второй ряд

b1, b2,..., b15, (2)

где bi(i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших ai. Существует ли ряд чисел ai, если дан ряд чисел bi:

1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.

ВверхВниз   Решение


Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?

ВверхВниз   Решение


Докажите тождество:

(1 + x + x2 +...+ x9)(1 + x10 + x20 +...+ x90
×(1 + x100 + x200 +...+ x900)...= $\displaystyle {\dfrac{1}{1-x}}$.


Вверх   Решение

Задача 61495
Темы:    [ Формальные степенные ряды ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Докажите тождество:

(1 + x + x2 +...+ x9)(1 + x10 + x20 +...+ x90
×(1 + x100 + x200 +...+ x900)...= $\displaystyle {\dfrac{1}{1-x}}$.



Подсказка

Данное равенство равносильно утверждению, что всякое положительное число может быть записано в десятичной системе счисления и при том только одним способом.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 11
Название Последовательности и ряды
Тема Последовательности
параграф
Номер 3
Название Производящие функции
Тема Производящие функции
задача
Номер 11.068

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .