ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC. Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна. В описанном четырёхугольнике ABCD AB = CD ≠ BC. Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый. |
Задача 64402
УсловиеВ описанном четырёхугольнике ABCD AB = CD ≠ BC. Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый. Решение Предположим, что ∠ALB ≥ 90°. Тогда AB² ≥ AL² + BL² и CD² ≥ CL² + DL²; отсюда же получаем, что AD² ≤ AL² + DL² и BC² ≤ BL² + CL². Значит, Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке