Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Володя бежит по круговой дистанции с постоянной скоростью. В двух точках дистанции стоит по фотографу. После старта Володя 2 минуты был ближе к первому фотографу, затем 3 минуты – ближе ко второму фотографу, а потом снова ближе к первому. За какое время Володя пробежал весь круг?

Вниз   Решение


Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

ВверхВниз   Решение


Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.

ВверхВниз   Решение


Дан квадрат со стороной 1. От него отсекают четыре уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).

ВверхВниз   Решение


В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB.

ВверхВниз   Решение


Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

ВверхВниз   Решение


При каких  n > 3  правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

ВверхВниз   Решение


Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

ВверхВниз   Решение


В четырёхугольнике ABCD стороны AD и BC параллельны.
Докажите, что если биссектрисы углов DAC, DBC, ACB и ADB образовали ромб, то  AB = CD.

Вверх   Решение

Задача 64619
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Ромбы. Признаки и свойства ]
[ Свойства биссектрис, конкуррентность ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

В четырёхугольнике ABCD стороны AD и BC параллельны.
Докажите, что если биссектрисы углов DAC, DBC, ACB и ADB образовали ромб, то  AB = CD.


Решение 1

  Пусть O – точка пересечения диагоналей AC и BD (см. рис). Биссектрисы углов ADB и DAC пересекаются в центре O1 вписанной окружности треугольника AOD, а биссектрисы углов ACB и DBC – в центре O2 вписанной окружности треугольника BOC. Значит, точки O1 и O2 лежат на общей биссектрисе вертикальных углов AOD и BOC.
  Рассмотрим ромб PO1QO2 из условия задачи. В нём  ∠PO1O2 = ∠QO1O2,  а значит,  ∠DO1O = ∠AO1O.  Следовательно, треугольники AOO1 и DOO1 равны по стороне (O1O – общая) и двум прилежащим углам, откуда  AO = DO.  Отсюда  ∠OAD = ∠ODA,  и четырёхугольник ABCD симметричен относительно серединного перпендикуляра к AD. Поэтому  AB = CD.


Решение 2

  Обозначим вершины ромба через P, O1, Q, O2, как и в решении 1. Расстояние между прямыми O2P и O1Q равно расстоянию между прямыми O1P и O2Q, то есть  AC sin(½∠CAD) = BD sin(½∠BDA).
  Так как вершины B и C равноудалены от прямой AD, имеем  AC sin ∠CAD = BD sin∠BDA.
  Деля второе полученное равенство на первое, получаем  cos(½∠CAD) = cos(½∠BDA).
  Так как оба угла CAD и BDA меньше 180°, получаем, что  ∠CAD = ∠BDA.  Как и в решении 1, заключаем, что  AB = CD.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2013-2014
этап
1
Вариант 3
класс
Класс 9
задача
Номер 9.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .