Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если  ВМ = 8 см,  KC = 1 см  и  АВ > ВС.

Вниз   Решение


В окружность радиуса 10 вписан четырёхугольник, диагонали которого перпендикулярны и равны 12 и  10.  Найдите стороны четырёхугольника.

ВверхВниз   Решение


Найдите все значения корней:
  a)  ;   б)  ;   в)  ;   г)  ;   д)  ;   е)  .

ВверхВниз   Решение


Существует следующий способ проверить, делится ли данное число N на 19:
  1) отбрасываем последнюю цифру у числа N;
  2) прибавляем к полученному числу произведение отброшенной цифры на 2;
  3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.
  4) если остается 19, то 19 делится на N, в противном случае N не делится на 19.
Докажите справедливость этого признака делимости.

ВверхВниз   Решение


``65 = 64 = 63''. Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:




\begin{picture}
(80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}}
\multiput(0,0)(...
...(0,1){80}}
\put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50)
\end{picture}
        
\begin{picture}
(150,50)\multiput(0,0)(0,10){6}{\line(1,0){130}}
\multiput(0,0...
...0,1){30}}\put(50,20){\line(0,1){30}}
\qbezier(0,0)(65,25)(129,50)
\end{picture}



Как расположить те же четыре части шахматной доски, чтобы доказать равенство ``64=63''?

ВверхВниз   Решение


Пусть z1, ..., zn – отличные от нуля комплексные числа, лежащие в полуплоскости  α < arg z < α + π.  Докажите, что
  а)  z1 + ... + zn ≠ 0;
  б)  1/z1 + ... + 1/zn ≠ 0.

ВверхВниз   Решение


Постройте прямоугольный треугольник по гипотенузе и проекции одного из катетов на гипотенузу.

ВверхВниз   Решение


Найдите все числа вида 13xy45z,  которые делятяс на 792.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали взаимно перпендикулярны и пересекаются в точке P.
Найдите  AP² + BP² + CP² + DP²  и  AB² + BC² + CD² + AD².

ВверхВниз   Решение


Докажите, что при любом натуральном n число  n² + 8n + 15  не делится на  n + 4.

ВверхВниз   Решение


Известно, что  z + z–1 = 2 cos α.
  а) Докажите, что  zn + z–n = 2 cos nα.
  б) Как выражается  zn + z–n  через  y = z + z–1?

ВверхВниз   Решение


Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение  AK : BK  равно отношению стороны правильного пятиугольника к его диагонали.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся двух данных концентрических окружностей и данной прямой.

ВверхВниз   Решение


Найдите наименьшее число вида  n = 2αpq,  где p и q – некоторые нечётные простые числа, для которого  σ(n) = 3n.

ВверхВниз   Решение


Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и N, где  N > 5.  Какое наименьшее значение может иметь число N?

Вверх   Решение

Задача 64620
Тема:    [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и N, где  N > 5.  Какое наименьшее значение может иметь число N?


Решение

  Число N может равняться 14, как показывает, например, четвёрка чисел 4, 15, 70, 84. Осталось показать, что  N ≥ 14.

  Лемма. Среди попарных НОД четырёх чисел не может быть ровно двух чисел, делящихся на некоторое натуральное k.

  Доказательство. Если среди исходных четырёх чисел есть не больше двух чисел, делящихся на k, то среди попарных НОД на k делится не более одного. Если же три из исходных чисел делятся на k, то все три их попарных НОД делятся на k.

  Применяя лемму к  k = 2,  получаем, что число N чётно. Применяя её же к  k = 3,  k = 4  и  k = 5,  получаем, что N не делится на 3, 4 и 5. Значит, N не может равняться 6, 8, 10 и 12.


Ответ

14.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2013-2014
этап
1
Вариант 3
класс
Класс 9
задача
Номер 9.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .